A sweeping preconditioner for Yee’s finite difference approximation of time-harmonic Maxwell’s equations
نویسندگان
چکیده
This paper is concerned with the fast iterative solution of linear systems arising from finite difference discretizations in electromagnetics. The sweeping preconditioner with moving perfectly matched layers previously developed for the Helmholtz equation is adapted for the popular Yee grid scheme for wave propagation in inhomogeneous, anisotropic media. Preliminary numerical results are presented for typical examples.
منابع مشابه
A sweeping preconditioner for time-harmonic Maxwell's equations with finite elements
Article history: Received 31 August 2011 Received in revised form 30 December 2011 Accepted 19 January 2012 Available online 28 January 2012
متن کاملFinite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures
Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...
متن کاملSuperconvergence and Extrapolation Analysis of a Nonconforming Mixed Finite Element Approximation for Time-Harmonic Maxwell's Equations
In this paper, a nonconforming mixed finite element approximating to the three-dimensional time-harmonic Maxwell’s equations is presented. On a uniform rectangular prism mesh, superclose property is achieved for electric field E and magnetic field H with the boundary condition E × n = 0 by means of the asymptotic expansion. Applying postprocessing operators, a superconvergence result is stated ...
متن کاملNumerical convergence and physical fidelity analysis for Maxwell’s equations in metamaterials
In this paper, we develop a leap-frog mixed finite element method for solving Maxwell’s equations resulting from metamaterials. Our scheme is similar to the popular Yee’s FDTD scheme used in electrical engineering community, and is preferable for three dimensional large scale modeling since no storage of the large coefficient matrix is needed. Our scheme is proved to obey the Gauss’s law automa...
متن کاملGeometric Computational Electrodynamics with Variational Integrators and Discrete Differential Forms
In this paper, we develop a structure-preserving discretization of the Lagrangian framework for electromagnetism, combining techniques from variational integrators and discrete differential forms. This leads to a general family of variational, multisymplectic numerical methods for solving Maxwell’s equations that automatically preserve key symmetries and invariants. In doing so, we demonstrate ...
متن کامل